group
Small finite groups and Cayley tables
GAPid | Group | Presentation |
3_1 | cyclic group C3 | < a | a3 > |
4_1 | cyclic group C4 | < a | a4 > |
4_1b | cyclic group C4 | < i | i4 > |
4_2 | Klein group K4 | < a,b | a2=b2=(ab)2 > |
4_2a | Klein group K4 (rectangle) | < a,b | a2=b2=(ab)2 > |
4_2b | Klein group K4 (losange) | < a,b | a2=b2=(ab)2 > |
6_2a | cyclic group C6 | < a | a6 > |
6_2b | group C3xC2 | < a,b | a3=b2=aba-1b > |
6_1 | symmetric group S3,dihedral Dih6 (triangle) | < a,c | a3=c2=acac > |
8_1 | cyclic group C8 | < a | a8 > |
8_2 | group C4xC2 | < a,b | a4=b2=aba-1b > |
8_3 | dihedral group Dih8 (square) | < a,c | a4=c2=acac > |
8_3b | dihedral group Dih8 (Heisenberg) | < a,b,c | a2=b2=c2=abcbc > |
8_4 | dicyclic group Dic8, quaternion Q8 | < a,d | a4=d4=adad-1=a2d2 > |
8_4b | dicyclic group Dic8, quaternion Q8 with i,j | < i,j | i4=j4=i2j2=ijij-1 > |
8_4c | dicyclic group Dic8, quaternion Q8 with i,j,k | < i,j,k | i4=j4=k4=i2j2=j2k2=kji > |
8_5 | Klein group K8 | < a,b,c | a2=b2=(ab)2=c2=(bc)2=(ca)2 > |
12_2a | cyclic group C12 | < a | a12 > |
12_2c | group C4xC3 | < a,b | a4=b3=aba-1b-1 > |
12_5a | group C6xC2 | < a,b | a6=b2=aba-1b > |
12_5c | group K4xC3 | < a,b,c | a2=b2=(ab)2=c3=acac-1=bcbc-1 > |
12_4a | dihedral group Dih12 | < a,c | a6=c2=acac > |
12_4c | group K4:C3 | < a,b,c | a2=b2=(ab)2=c3=acac=bcbc-1 > |
12_1a | dicyclic group Dic12 | < a,d | a6=d4=adad-1=a3d2 > |
12_3a | alternating group A4 (tetrahedron) | < a,c | a3=c2=(ac)3 > |
12_3b | alternating group A4 (tetrahedron) | < s,t | s3=t3=(st)2 > |
12_3c | group K4:C3 (A4) | < a,b,c | a2=b2=(ab)2=c3=acabc-1=abcbc-1 > |
16_1 | cyclic group C16 | < a | a16 > |
16_5 | group C8xC2 | < a,b | a8=b2=aba-1b > |
16_2 | group C4xC4 | < a,b | a4=b4=aba-1b-1 > |
16_4 | group C4:C4 | < a,b | a4=b4=abab-1 > |
16_10 | group (C4xC2)xC2 | < a,b,c | a4=b2=c2=aba-1b=aca-1c=bcbc > |
16_3 | group K8:C2 | < a,b | a4=b2=(ab)4=(aab)2 > |
16_12 | group Q8xC2 | < a,d,b | a4=d4=b2=a2dd=adad-1=aba-1b=dbd-1b > |
16_11 | group D8xC2 | < a,b,c | a4=b2=c2=aba-1b=acac=abcabc > |
16_13 | group Cb8:C2 | < a,b,c | a4=b2=c2=aba-1b=acac=a2bcbc > |
16_13p | Pauli group G1 | < a,b,c | a2=b2=c2=abcacb=abacbc ... (ab)4=(bc)4=(ca)4=(abc)4 > |
16_7 | dihedral group Dih16 | < a,c | a8=c2=acac > |
16_8 | quasidihedral group QD16 | < a,c | a8=c2=aca-3c > |
16_6 | modular group M16 | < a,b | a8=b2=aba3b > |
16_9 | dicyclic group Q16 | < a,d | a8=d4=adad-1=a4d2 > |
16_14 | Klein group K16 | < a,b,c,d | a2=b2=(ab)2=c2=(bc)2=(ca)2=d2=(ad)2=(bd)2=(cd)2 > |
20_3 | Frobenius group F20 | < a,b | a5=b4=(ab)4=aaba-1b-1 > |
21_1 | Frobenius group F21 | < a,b | a7=b3=aba5b2 > |
24_2a | cyclic group C24 | < a | a24 > |
24_2b | group C8xC3, Cc24 | < a,b | a8=b3=aba-1b-1 > |
24_1c | group C12:C2 | < a,c | a12=c8=a3c2=caca-2 > |
24_1b | group C6:C4 | < a,b,c | a6=b12=ab-2=c8=acac-1=cb3c > |
24_1a | group C8:C3 | < a,b | a8=b3=aba-1b > |
24_10c | modular group M24 | < a,b | a12=b2=aba5b > |
24_10b | group Cb12:C2 | < a,b,c | a6=b2=aba-1b=c2=aca-1c=a3bcbc > |
24_10a | group Dih8xC3 | < a,c,b | a4=c2=acac=b3=aba-1b-1=bcb-1c > |
24_6c | dihedral group Dih24 | < a,c | a12=c2=acac > |
24_6a | group Dih8:C3 | < a,c,b | a4=c2=acac=b3=aba-1b-1=bcbc > |
24_9c | group Cb24 | < a,b | a12=b2=aba-1b > |
24_9b | group C6xC4 | < a,b | a6=b4=aba-1b-1 > |
24_9a | group Cb8xC3 | < a,b,c | a4=b2=aba-1b=c3=aca-1c-1=bcbc-1 > |
24_5c | quasidihedral group QD24 | < a,c | a12=c2=aca-5c > |
24_5b | group Dih12:C2 | < a,c,d | a6=c2=acac=d4=a3d2=acdcd > |
24_5a | group Cb8:C3 | < a,b,c | a4=b2=aba-1b=c3=aca-1c-1=bcbc > |
24_5f | group Dih6xC4 | < a,b,c | a3=b2=abab=c4=aca-1c-1=bcb-1c-1 > |
24_11c | group C12:C2 | < a,b | a12=b12=a2b-2=a3bab > |
24_11b | group C6:C4 | < a,b,c | a6=b12=ab-2=c12=b2c-2=abcbac-1 > |
24_11a | group Q8xC3 | < a,d,b | a4=d4=adad-1=aadd=b3=aba-1b-1=dbd-1b-1 > |
24_4c | dicyclic group Dic24 | < a,d | a12=d4=adad-1=a6d2 > |
24_4b | group (C4xC3):C2, Cc12:C2 | < a,b,d | a4=b3=aba-1b=d4=adad-1=a2dd=dbd-1b > |
24_4a | group Q8:C3 | < a,d,b | a4=d4=adad-1=a2dd=b3=aba-1b=dbd-1b > |
24_7b | group C6:C4 | < a,b | a6=b4=abab-1 > |
24_7d | group Dic12xC2 | < a,d,b | a6=d4=adad-1=a3dd=b2=aba-1b=dbd-1b > |
24_7a | group Cb8:C3 | < a,b,c | a4=b2=aba-1b=c3=aca-1c=bcbc-1 > |
24_7e | group (K4xC3):C2 | < a,b,c,d | a2=b2=c3=abab=acac-1=bcbc-1=d4=add=abdbd=acdcd > |
24_8b | group Cb12:C2 | < a,b,c | a6=b2=aba-1b=c2=acac=a3bcbc > |
24_8p | group G2 | < a,b,c | a2=b2=c2=abcbac=ababacbc=(ac)4=(bc)4=(ab)6 > |
24_8d | group Dic12:C2 | < a,d,c | a6=d4=adad-1=a3dd=c2=acac=dcdc > |
24_8a | group Dih8:C3 | < a,c,b | a4=c2=acac=b3=aba-1b=cbcb-1 > |
24_8e | group (K4xC3):C2 | < a,b,c,d | a2=b2=c3=abab=acac-1=bcbc-1=d4=add=bdbd=acdcd > |
24_15b | group Cb12xC2 | < a,b,c | a6=b2=aba-1b=c2=aca-1c=bcbc > |
24_15a | group K8xC3 | < a,b,c | a6=b2=aba-1b=c2=aca-1c=bcbc > |
24_15e | group (K4xC3)xC2 | < a,b,c,d | a2=b2=c3=abab=acac-1=bcbc-1=d2=adad=bdbd=cdc-1d > |
24_14b | group Dih12xC2 | < a,b,c | a6=c2=acac=b2=aba-1b=bcbc > |
24_14a | group K8:C3 | < a,b,c | a6=b2=aba-1b=c2=acac=bcbc > |
24_14e | group (K4xC3):C2 | < a,b,c,d | a2=b2=c3=abab=acac-1=bcbc-1=d2=adad=bdbd=cdcd > |
24_13a | group A4xC2 | < a,b | a3=b2=(aba-1b)2 > |
24_12a | symmetric group S4 (cube) | < a,b | a3=b2=(abab)2 > |
24_12p | symmetric group S4 (cube) | < a,b,c | a2=b2=c2=(ab)3=(ac)3=(bc)3=(babc)2=(cbca)2=(acab)2 > |
24_3y | group Q8:C3, special linear group SL(2,3), binary tetrahedral group | < a,i | a6=i4=(ai)3=a3i2, ~e=a3=i2 > |
24_3e | group Q8:C3, special linear group SL(2,3) | < a,i | a6=i4=(ai)6=a3i2=(ai)3i2, ~e=a3=i2=(ai)3 > |
24_3f | group Q8:C3, special linear group SL(2,3) | < b,i | b3=i4=(bi)6=(bi)3i2, ~e=i2=(bi)3 > |
24_3g | group Q8:C3, special linear group SL(2,3) | < a,b | a6=b3=(ab)4=(ab)2a3, ~e=a3=(ab)2 > |
24_3c | group Q8:C3, special linear group SL(2,3) | < a,b | a3=b3=abab-1a-1b-1=(aab)4=(ab)6, ~e=(ab)3=(aab)2 > |
24_3d | group Q8:C3, special linear group SL(2,3) | < a,b | a6=b6=a3b3=a3(ab)2=(ab)4, ~e=a3=b3=(ab)2 > |
24_3a | group Q8:C3, special linear group SL(2,3) | < i,l | i4=l6=(il)3=i2l3 > |
24_3x | group Q8:C3, special linear group SL(2,3) | < k,r | k6=r4=(kr)3=k3r2 > |
24_3b | group Q8:C3, special linear group SL(2,3) | < i,j | i6=j4=(ij)3=i3j2 > |
30_4a | cyclic group C30 | < a | a30 > |
30_4b | group C15xC2 | < a,b | a15=b2=aba-1b-1 > |
30_4c | group C10xC3 | < a,b | a10=b3=aba-1b-1 > |
30_4d | group C6xC5 | < a,b | a6=b5=aba-1b-1 > |
40_3a | group C5:C8 | < a,b | a5=b8=1, bab-1=a3 > |
48_29x | general linear group GL(2,3) | < k,r | r2=k3=(kkrkrkr)2 ... (kr)8 > |
60_5 | alternating group A5 (icosahedron) | < a,b | a2=b3=(ab)5 > |
120_34 | symmetric group S5 | < a,b | a2=b4=(ab)5=(abab-1)3 > |
120_5a | SL(2,5) | |
168_42 | projective special linear group PSL(2,7) | < a,b | a2=b3=(ab)7=(abab-1)4 > |
|