group Small finite groups and Cayley tables
Small finite groups and Cayley tables

Explanations and comments
GAPidGroupPresentation
3_1cyclic group C3< a | a3 >
4_1cyclic group C4< a | a4 >
4_1bcyclic group C4< i | i4 >
4_2Klein group K4< a,b | a2=b2=(ab)2 >
4_2aKlein group K4 (rectangle)< a,b | a2=b2=(ab)2 >
4_2bKlein group K4 (losange)< a,b | a2=b2=(ab)2 >
6_2acyclic group C6< a | a6 >
6_2bgroup C3xC2< a,b | a3=b2=aba-1b >
6_1symmetric group S3,dihedral Dih6 (triangle)< a,c | a3=c2=acac >
8_1cyclic group C8< a | a8 >
8_2group C4xC2< a,b | a4=b2=aba-1b >
8_3dihedral group Dih8 (square)< a,c | a4=c2=acac >
8_3bdihedral group Dih8 (Heisenberg)< a,b,c | a2=b2=c2=abcbc >
8_4dicyclic group Dic8, quaternion Q8< a,d | a4=d4=adad-1=a2d2 >
8_4bdicyclic group Dic8, quaternion Q8 with i,j< i,j | i4=j4=i2j2=ijij-1 >
8_4cdicyclic group Dic8, quaternion Q8 with i,j,k< i,j,k | i4=j4=k4=i2j2=j2k2=kji >
8_5Klein group K8< a,b,c | a2=b2=(ab)2=c2=(bc)2=(ca)2 >
12_2acyclic group C12< a | a12 >
12_2cgroup C4xC3< a,b | a4=b3=aba-1b-1 >
12_5agroup C6xC2< a,b | a6=b2=aba-1b >
12_5cgroup K4xC3< a,b,c | a2=b2=(ab)2=c3=acac-1=bcbc-1 >
12_4adihedral group Dih12< a,c | a6=c2=acac >
12_4cgroup K4:C3< a,b,c | a2=b2=(ab)2=c3=acac=bcbc-1 >
12_1adicyclic group Dic12< a,d | a6=d4=adad-1=a3d2 >
12_3aalternating group A4 (tetrahedron)< a,c | a3=c2=(ac)3 >
12_3balternating group A4 (tetrahedron)< s,t | s3=t3=(st)2 >
12_3cgroup K4:C3 (A4)< a,b,c | a2=b2=(ab)2=c3=acabc-1=abcbc-1 >
16_1cyclic group C16< a | a16 >
16_5group C8xC2< a,b | a8=b2=aba-1b >
16_2group C4xC4< a,b | a4=b4=aba-1b-1 >
16_4group C4:C4< a,b | a4=b4=abab-1 >
16_10group (C4xC2)xC2< a,b,c | a4=b2=c2=aba-1b=aca-1c=bcbc >
16_3group K8:C2< a,b | a4=b2=(ab)4=(aab)2 >
16_12group Q8xC2< a,d,b | a4=d4=b2=a2dd=adad-1=aba-1b=dbd-1b >
16_11group D8xC2< a,b,c | a4=b2=c2=aba-1b=acac=abcabc >
16_13group Cb8:C2< a,b,c | a4=b2=c2=aba-1b=acac=a2bcbc >
16_13pPauli group G1< a,b,c | a2=b2=c2=abcacb=abacbc ... (ab)4=(bc)4=(ca)4=(abc)4 >
16_7dihedral group Dih16< a,c | a8=c2=acac >
16_8quasidihedral group QD16< a,c | a8=c2=aca-3c >
16_6modular group M16< a,b | a8=b2=aba3b >
16_9dicyclic group Q16< a,d | a8=d4=adad-1=a4d2 >
16_14Klein group K16< a,b,c,d | a2=b2=(ab)2=c2=(bc)2=(ca)2=d2=(ad)2=(bd)2=(cd)2 >
20_3Frobenius group F20< a,b | a5=b4=(ab)4=aaba-1b-1 >
21_1Frobenius group F21< a,b | a7=b3=aba5b2 >
24_2acyclic group C24< a | a24 >
24_2bgroup C8xC3, Cc24< a,b | a8=b3=aba-1b-1 >
24_1cgroup C12:C2< a,c | a12=c8=a3c2=caca-2 >
24_1bgroup C6:C4< a,b,c | a6=b12=ab-2=c8=acac-1=cb3c >
24_1agroup C8:C3< a,b | a8=b3=aba-1b >
24_10cmodular group M24< a,b | a12=b2=aba5b >
24_10bgroup Cb12:C2< a,b,c | a6=b2=aba-1b=c2=aca-1c=a3bcbc >
24_10agroup Dih8xC3< a,c,b | a4=c2=acac=b3=aba-1b-1=bcb-1c >
24_6cdihedral group Dih24< a,c | a12=c2=acac >
24_6agroup Dih8:C3< a,c,b | a4=c2=acac=b3=aba-1b-1=bcbc >
24_9cgroup Cb24< a,b | a12=b2=aba-1b >
24_9bgroup C6xC4< a,b | a6=b4=aba-1b-1 >
24_9agroup Cb8xC3< a,b,c | a4=b2=aba-1b=c3=aca-1c-1=bcbc-1 >
24_5cquasidihedral group QD24< a,c | a12=c2=aca-5c >
24_5bgroup Dih12:C2< a,c,d | a6=c2=acac=d4=a3d2=acdcd >
24_5agroup Cb8:C3< a,b,c | a4=b2=aba-1b=c3=aca-1c-1=bcbc >
24_5fgroup Dih6xC4< a,b,c | a3=b2=abab=c4=aca-1c-1=bcb-1c-1 >
24_11cgroup C12:C2< a,b | a12=b12=a2b-2=a3bab >
24_11bgroup C6:C4< a,b,c | a6=b12=ab-2=c12=b2c-2=abcbac-1 >
24_11agroup Q8xC3< a,d,b | a4=d4=adad-1=aadd=b3=aba-1b-1=dbd-1b-1 >
24_4cdicyclic group Dic24< a,d | a12=d4=adad-1=a6d2 >
24_4bgroup (C4xC3):C2, Cc12:C2< a,b,d | a4=b3=aba-1b=d4=adad-1=a2dd=dbd-1b >
24_4agroup Q8:C3< a,d,b | a4=d4=adad-1=a2dd=b3=aba-1b=dbd-1b >
24_7bgroup C6:C4< a,b | a6=b4=abab-1 >
24_7dgroup Dic12xC2< a,d,b | a6=d4=adad-1=a3dd=b2=aba-1b=dbd-1b >
24_7agroup Cb8:C3< a,b,c | a4=b2=aba-1b=c3=aca-1c=bcbc-1 >
24_7egroup (K4xC3):C2< a,b,c,d | a2=b2=c3=abab=acac-1=bcbc-1=d4=add=abdbd=acdcd >
24_8bgroup Cb12:C2< a,b,c | a6=b2=aba-1b=c2=acac=a3bcbc >
24_8pgroup G2< a,b,c | a2=b2=c2=abcbac=ababacbc=(ac)4=(bc)4=(ab)6 >
24_8dgroup Dic12:C2< a,d,c | a6=d4=adad-1=a3dd=c2=acac=dcdc >
24_8agroup Dih8:C3< a,c,b | a4=c2=acac=b3=aba-1b=cbcb-1 >
24_8egroup (K4xC3):C2< a,b,c,d | a2=b2=c3=abab=acac-1=bcbc-1=d4=add=bdbd=acdcd >
24_15bgroup Cb12xC2< a,b,c | a6=b2=aba-1b=c2=aca-1c=bcbc >
24_15agroup K8xC3< a,b,c | a6=b2=aba-1b=c2=aca-1c=bcbc >
24_15egroup (K4xC3)xC2< a,b,c,d | a2=b2=c3=abab=acac-1=bcbc-1=d2=adad=bdbd=cdc-1d >
24_14bgroup Dih12xC2< a,b,c | a6=c2=acac=b2=aba-1b=bcbc >
24_14agroup K8:C3< a,b,c | a6=b2=aba-1b=c2=acac=bcbc >
24_14egroup (K4xC3):C2< a,b,c,d | a2=b2=c3=abab=acac-1=bcbc-1=d2=adad=bdbd=cdcd >
24_13agroup A4xC2< a,b | a3=b2=(aba-1b)2 >
24_12asymmetric group S4 (cube)< a,b | a3=b2=(abab)2 >
24_12psymmetric group S4 (cube)< a,b,c | a2=b2=c2=(ab)3=(ac)3=(bc)3=(babc)2=(cbca)2=(acab)2 >
24_3ygroup Q8:C3, special linear group SL(2,3),
binary tetrahedral group
< a,i | a6=i4=(ai)3=a3i2, ~e=a3=i2 >
24_3egroup Q8:C3, special linear group SL(2,3)< a,i | a6=i4=(ai)6=a3i2=(ai)3i2, ~e=a3=i2=(ai)3 >
24_3fgroup Q8:C3, special linear group SL(2,3)< b,i | b3=i4=(bi)6=(bi)3i2, ~e=i2=(bi)3 >
24_3ggroup Q8:C3, special linear group SL(2,3)< a,b | a6=b3=(ab)4=(ab)2a3, ~e=a3=(ab)2 >
24_3cgroup Q8:C3, special linear group SL(2,3)< a,b | a3=b3=abab-1a-1b-1=(aab)4=(ab)6, ~e=(ab)3=(aab)2 >
24_3dgroup Q8:C3, special linear group SL(2,3)< a,b | a6=b6=a3b3=a3(ab)2=(ab)4, ~e=a3=b3=(ab)2 >
24_3agroup Q8:C3, special linear group SL(2,3)< i,l | i4=l6=(il)3=i2l3 >
24_3xgroup Q8:C3, special linear group SL(2,3)< k,r | k6=r4=(kr)3=k3r2 >
24_3bgroup Q8:C3, special linear group SL(2,3)< i,j | i6=j4=(ij)3=i3j2 >
30_4acyclic group C30< a | a30 >
30_4bgroup C15xC2< a,b | a15=b2=aba-1b-1 >
30_4cgroup C10xC3< a,b | a10=b3=aba-1b-1 >
30_4dgroup C6xC5< a,b | a6=b5=aba-1b-1 >
40_3agroup C5:C8< a,b | a5=b8=1, bab-1=a3 >
48_29xgeneral linear group GL(2,3)< k,r | r2=k3=(kkrkrkr)2 ... (kr)8 >
60_5alternating group A5 (icosahedron)< a,b | a2=b3=(ab)5 >
120_34symmetric group S5< a,b | a2=b4=(ab)5=(abab-1)3 >
120_5aSL(2,5)
168_42projective special linear group PSL(2,7)< a,b | a2=b3=(ab)7=(abab-1)4 >